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Abstract: Channel prediction is critical to address
the channel aging issue in mobile scenarios. Ex-
isting channel prediction techniques are mainly de-
signed for discrete channel prediction, which can only
predict the future channel in a fixed time slot per
frame, while the other intra-frame channels are usu-
ally recovered by interpolation. However, these ap-
proaches suffer from a serious interpolation loss, es-
pecially for mobile millimeter-wave communications.
To solve this challenging problem, we propose a ten-
sor neural ordinary differential equation (TN-ODE)
based continuous-time channel prediction scheme to
realize the direct prediction of intra-frame channels.
Specifically, inspired by the recently developed con-
tinuous mapping model named neural ODE in the
field of machine learning, we first utilize the neural
ODE model to predict future continuous-time chan-
nels. To improve the channel prediction accuracy and
reduce computational complexity, we then propose the
TN-ODE scheme to learn the structural characteristics
of the high-dimensional channel by low-dimensional
learnable transform. Simulation results show that the
proposed scheme is able to achieve higher intra-frame
channel prediction accuracy than existing schemes.
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I. INTRODUCTION

Millimeter-wave (mmWave) massive multiple-input
multiple-output (MIMO) has been a critical technol-
ogy for boosting data transmission speed in 5G com-
munication networks [1]. By deploying a large num-
ber of antennas at the base station (BS), massive
MIMO can achieve several orders of magnitude im-
provements in beamforming gain [2]. To fully realize
this potential, accurate channel state information (CSI)
is required at the BS for the efficient design of precod-
ing. According to the current 5G standard [3], each
frame in 5G wireless communication systems contains
multiple time slots, while only the first time slot of
each frame is used to estimate the CSI through the
predefined sounding reference signal (SRS). Then, the
subsequent time slots within the same frame perform
precoding design according to the CSI estimated in the
first slot.

However, since the channel is time varying in mo-
bile scenarios, the CSI in the first time slot may sig-
nificantly differ from the actual channels in the subse-
quent time slots. This is called channel aging in the
literature [4, 5]. Specifically, the channel coherence
time is inversely proportional to the carrier frequency
and user mobile speed, which could be shorter than
the channel estimation period or SRS period in mobile
scenarios. For example, for the case of 28 GHz carrier
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frequency and 60 km/h user mobile speed, the channel
coherence time is about 0.32 ms, which is smaller than
the shortest SRS period of 0.625 ms defined by the 5G
standard [3]. In this case, the estimated CSI in the first
time slot becomes outdated, which could cause a seri-
ous spectral efficiency loss of about 30% [6]. There-
fore, the channel aging problem has to be carefully ad-
dressed to enable fast user mobility in mmWave mas-
sive MIMO systems.

1.1 Prior Works

To address the channel aging problem, channel pre-
diction techniques have been widely studied to pre-
dict the future channels by exploring the channel cor-
relation in the time domain [6—13]. There are two
typical categories of channel prediction techniques,
i.e., model-based and data-based channel prediction.
For the first category [6-8], some classical models
are utilized to characterize the time-varying channels,
such as the linear extrapolation model [6], the auto-
regressive (AR) model [7], and the spatio-temporal
auto-regressive (ST-AR) model [8]. However, since
the actual mobile channels simultaneously suffer from
the multi-path effect and the Doppler effect, the time-
varying characteristics of actual channels are compli-
cated. Thus, for this category of channel prediction
techniques, the fossilized models are difficult to match
the time-varying channels, resulting in the unreliable
performance in mobile scenarios.

To deal with this problem, data-based channel pre-
diction techniques have been recently proposed to
match the time-varying channels in the data-driven
way [9-13]. Since the neural network models are
able to learn the intrinsic complicated feature from
data, which could be exploited to improve the chan-
nel prediction accuracy. Specifically, in [9], a fully-
connected (FC) network was utilized to predict future
channels according to the input of high-dimensional
historical channels. Then, to decrease the training
complexity caused by high-dimensional historical in-
puts, the recurrent neural network (RNN) like archi-
tectures, such as RNN, gate recurrent unit (GRU), and
long-short term memory (LSTM), were trained to it-
eratively process historical channels [10—-12]. Further-
more, to avoid the prediction error propagation prob-
lem of the sequential prediction of future channels, the
transformer model was used to predict future channels

in parallel in [13].

However, the existing channel prediction tech-
niques [6—13] were designed for discrete channel pre-
diction, while they fail to directly predict the channels
in all time slots of each frame. To be more specific,
as we discussed before, the channels can only be es-
timated in the first time slot of each frame through
the transmission of SRS. Based on these discretely es-
timated historical channels, the future channels with
the same time interval are predicted by existing chan-
nel prediction techniques. Then, the channels in other
time slots between two adjacent SRS could be recov-
ered by using interpolation methods. Unfortunately,
there exists a serious interpolation loss for these dis-
crete channel prediction techniques in mobile scenar-
10s. One possible solution is continuous-time channel
prediction for all time slots of each frame. Unfortu-
nately, to the best of our knowledge, none of the ex-
isting methods can achieve continuous-time channel
prediction.

1.2 Our Contributions

To fill in this gap, we propose a tensor neural ordinary
differential equation (TN-ODE) based continuous-
time channel prediction scheme in this paper. Specif-
ically, inspired by the recently developed continuous-
time signal processing technology named neural ODE
in the field of machine learning [14], we adopt the neu-
ral ODE architecture proposed in [14] to model the
continuous-time channel prediction problem. In the
above architecture, a GRU-based encoder is used to
preprocess the discretely sampled historical channels,
then a neural ODE-based decoder is used to predict fu-
ture channels in consecutive time slots. Furthermore,
to improve the channel prediction accuracy and reduce
the computational complexity of the neural ODE, we
propose the TN-ODE to exploit the structural charac-
teristics of channels in multiple domains by a series
of low-dimensional learnable transforms. To be more
specific, in the antenna domain, the channel model is
described by different angles of arrival (AoAs) and an-
gles of departure (AoDs), while in the frequency do-
main, the channel model is mainly determined by mul-
tiple times of arrival (ToAs). Thanks to these structural
characteristics, the proposed TN-ODE allows us to de-
couple the complicated high-dimensional channel pre-
diction into efficient low-dimensional channel predic-
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tion in multiple domains. Simulation results show that
the proposed TN-ODE based continuous-time channel
prediction technique can effectively mitigate the inter-
polation loss and improve the channel prediction per-
formance in all time slots of each frame.

1.3 Organization and Notation

The remainder of this paper is organized as follows. In
Section II, the system model of the mmWave massive
MIMO is introduced, and the continuous-time chan-
nel prediction problem in this system is then formu-
lated. After that, we elaborate on the proposed TN-
ODE based continuous-time channel prediction model
in Section III. Section IV illustrates the simulation re-
sults. Finally, conclusions are drawn in Section V.

Notation: We denote the column vector a and matrix
A by boldface lower-case and upper-case letters, re-
spectively; AT, A# and A~! are the transpose, con-
jugate transpose, and inverse of the matrix A, respec-
tively; A ® B is the Kronecker product of the ma-
trix A and matrix B; A o B is the Hadamard prod-
uct of A and B; Iy denotes an N x N identity ma-
trix. CN (,u, 02) is the probability density function
of the circularly symmetric complex Gaussian distri-
bution with mean p and variance 0. E{-} denotes
the statistical expectation. =~ We use vec(A) to de-
note the vectorization of matrix A. o(z) = H%
and tanh(z) = Z:g:: represent the Sigmoid func-
tion and hyperbolic tangent function, respectively. We
denote h[n],n € Z as a discrete-time sequence and
h(t),t € R as a continuous-time sequence.

II. SYSTEM MODEL

In this section, we will first introduce the signal model
of the mmWave massive MIMO system. Then, the
continuous-time channel prediction is formulated to
avoid the interpolation loss problem in existing dis-
crete channel prediction schemes.

2.1 Signal Model

In this paper, we consider an uplink time division du-

Ngr-antenna user with M subcarriers. To reduce en-
ergy consumption, hybrid precoding structure is em-
ployed in the BS [16], where the number of radio fre-
quency (RF) chains is Ngrp, as indicated in Figure 1.
According to the 5G standard [3], the time resources
for communication are divided into frames and each
frame consists of () time slots. As shown in Figure
2, the () time slots could be further divided into three
parts, i.e., uplink pilots, uplink data transmission, and
downlink data transmission. For the g-th time slot,
N, symbols are included and the channel remains un-
changed during the N, symbols based on the block-
fading assumption [17], where the channel remains
time-invariant within each time slot and changes be-
tween different time slots.

Digital precoder

Multiple
streams

Baseband |
Processing| .

User BS

Figure 1. Hybrid precoding for mmWave massive MIMO.
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Figure 2. The 5G frame structure defined by 3GPP [3].

Let H,,(t) € CNt*M= denote the channel at the
time ¢. Due to the limited number of scattering clusters
in the mmWave propagation environment, we adopt
the widely used geometric Saleh-Valenzuela multipath
channel model [16] to characterize the mmWave chan-
nel. Under this model, H,, (%) can be denoted as

plexing (TDD) based mmWave massive MIMO sys- L '

tem with orthogonal frequency division multiplexing H,(t) = Z eIt ) g (¢ p)all (¢ r),
(OFDM). The base station (BS) equipped with an Np- =1

antenna uniform linear array (ULA) [15] serves an (D
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where L is the number of the paths, oy, vy, 77, ¢; T, and
¢ r are the complex path gain, Doppler shift, ToA,
AoA, and AoD of the [-th path respectively. For m €
{1,2,-- M}, fn = f+ Z(m — %) denotes the
m-th subcarrier frequency, Wlth f, B, and M being
the carrier frequency, bandwidth, and the number of
subcarriers. Since the ULA is considered in this paper,
the array steering vector at(¢; ) and ag(¢;r) could
be represented by [18]

—_

- 27 .

aT(¢l,T) = [e_]TdSm((?z,T)nT]’ )

VNr

1

ar(pir) = [eﬂ - dsin(éy, R)UR] 3)

VNR
where np = [0,1,--- ,Np — 1]7 and ng =
[0,1,---, Ng — 1]T, X is the carrier wavelength, and

d is the antenna spacing usually set as d = \/2.

We denote Ty and T as the duration time of one
frame and one time slot, where 7y = Q7. Accord-
ingly, we can use H?? = H,,(t,,) to denote the
channel at the g-th time slot of the p-th frame and the
m-th subcarrier, where ¢, , = pT; + ¢Ts. Then, the
received signal Y9 € CNrr*Na ot the g-th time slot
of the p-th frame and the m-th subcarrier in BS can be
expressed by

YT(#q) — A(p,q)Hqu)Sgg,Q) + A(p,q)Ngg,q)
_ ﬁfﬁv‘”sgg,q) + A(p,q)N%,q)’ 4)
where A®® ¢ CVNerxNt s the frequency-

independent combining matrix, S2? € CNrxNa

denotes the transmitted signal, Nfﬁ’q) €
the Gaussian noise and each element following the
distribution CN(0, o) with o2 being the noise power,
and ﬁﬁﬁ’” € CNrrXNr jg the effective channel matrix
in the g-th time slot of the p-th frame and the m-th
subcarrier.

We utilize the discrete Fourier transmission (DFT)
codebook to design the analog combining A ?9) [19].
In the DFT codebook, each codeword points to a spe-
cific azimuth AoA and all codewords will cover the
entire beam space. By traversing all codewords, the
strongest Nrp codewords could be selected to con-
struct A9 Benefiting from the fact that the time-
varying channel is mainly caused by the Doppler ef-
fect, while the AoA and AoD are time-invariant in

CNrrxNg jg

several frames during tens of milliseconds [20], the
optimal combining matrix stays unchanged in several
frames. In this case, we suppose AP9) = A Vp €

{0,1,---,P—1},¥q € {0,1,---,Q — 1}, where P is
the number of frames in the order of tens of millisec-
onds.

In particular, when ¢ = 0, the effective channel

ﬁfﬁ’o) of the first time slot in the p-th frame is es-
timated according to the predefined pilot sequence
S%’O) and received signal Yﬁf{’o). Generally, we use
the least square (LS) channel estimation method to
recover the effective channel, which could be repre-
sented by

VeC(I:I%’O)) (S(p 0" ® Ingp )™ Vec(Y po)), 5)

where Vec(I:L(f;’o)) is the vectorization of LS channel
estimation 1“15570). When ¢ # 0, the S%’Q) is the trans-
mitted signal and the achievable average rate R could
be written as

R= (6)

Z log,

Iy, + D(p Q)H(p q)H(p )" D(p o)t

We utilize the classical zero-forcing method [2] to de-
sign the digital precoding D?? € CNexNrr in the
g-th time slot of the p-th frame and the m-th subcar-
rier as:

D(p q) _ (H(p ) H(p q)) (p ot (7)

2.2 Problem Formulation

To calculate the digital precoding Dﬁfi"”, the esti-
mated instantaneous I:I,(f;’q) is required according to
(7). Whereas, since only the CSI at the first time slot
of each frame ﬂ%’o) is available, we usually use the
1”15570) to perform precoding for the subsequent time
slots, i.e., D2 = DY Unfortunately, due to the
channel aging issue induced by mobility, the outdated
CSI ﬂﬁﬁ’o) has a significant change compared with the
actual effective channel ﬁiﬁm, which results in a sever
performance loss for mmWave MIMO in mobile sce-
narios.

To mitigate the performance loss caused by chan-
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nel aging, some channel prediction techniques [6—13]
have been proposed to deal with the channel aging is-
sue by exploring the temporal correlation of the time-
varying channel. Specifically, the existing channel
prediction schemes could predict future channels in

discrete frames, i.e., I:I%H’O), sy I:I%JFK’O), based on
the historical channels Hgﬁ_‘]’o),- - H%’O) with the

same time interval. Since these channel prediction
methods are designed for discrete channel prediction,
which only predict the channel in the first time slot of
each frame, they can not realize the direct prediction of
the channels for all time slots in future frames. Thus,
the interpolation method has to be utilized to recover

the channels ﬂ££+k’q) with ¢ > 0 as

ﬂgg-Fk,q) — (1 o %)I:I?(g-i-k,()) + %I:I;g—i_k-‘rl’o), (8)

where k = 0,1, - -, K — 1. However, due to the com-
plicated change of the channel, simple interpolation is
difficult to describe the actual change of the channel.
Therefore, there is an interpolation loss for the existing
discrete channel prediction schemes.

Unlike the existing discrete channel prediction
schemes, we reformulate the channel prediction prob-
lem as a continuous-time channel mapping problem to
avoid interpolation loss. Specifically, we utilize the
historical discrete channels from the past J frames to
predict the future continuous-time channels in the next
K frames, which could be formulated as

K-1Q-1 M 3 (p+k,q) Ay (p+k,q) (12

: H, ™ —Hx""|

o 35 3 MBI
k=0 q=0 m=1 ||Hm H

(92)
st (A®D fIe2) ... ferE-1.0-1)
= fAZO . HED: ), (9b)

where f(-) is the proposed continuous-time channel
prediction model and @ is the parameters of the model.
Since the normalized mean square error (NMSE) is not
affected by the amplitude of the channel, we adopt the
NMSE as the minimization target to realize stable con-
vergence. It is worth noting that the estimated histori-
cal channels are discretely sampled at the first time slot
of each frame. Correspondingly, the predicted chan-
nels are continuously distributed at any time slot of
each future frame. By contrast, the existing discrete

channel prediction schemes only predict the channel at
the first time slot of the future frames. Thus, the pro-
posed continuous-time channel prediction scheme re-
alizes the direct prediction of the future channel in any
time slot so that the interpolation loss can be avoided.

III. PROPOSED METHOD

In this section, we first introduce the background of
neural ODE and elaborate on the framework of neural
ODE based channel prediction. Then, we propose the
TN-ODE to explore the mmWave channel structure to
improve the channel prediction performance.

3.1 Background of Neural ODE

To achieve continuous-time channel prediction, it is
crucial to find an appropriate technique to process
continuous-time signals. Recently, with the rapid ad-
vancement in the field of dynamical systems, neu-
ral ODE becomes an attractive technology for mod-
eling continuous-time sequences [14, 21, 22]. Neu-
ral ODEs use first-order differential equations to fit
the hidden state of time sequences, so it is capable of
handling continuous-time signals. To make this pa-
per self-contained, we provide a brief background of
neural ODE. Specifically, classical RNN-like architec-
tures, including RNN, GRU, and LSTM, build compli-
cated networks to encode time sequences into a series
of hidden states:

h[n] = hn — 1] + g(h[n — 1], 0). (10)

Here, h[n] represents the hidden state at the n-th dis-
crete time, g(-) denotes the state transition function re-
alized by neural networks, and 0 is the network param-
eters. The transition in (10) is built on a discrete differ-
ence equation, which is awkward to deal with signals
not belonging to discrete time samples. On the con-
trary, neural ODEs define a continuous-time hidden
state h(¢), which can be formulated as a time-invariant
differential equation:

—— = f(h(t),0). (11)
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Besides, (11) is equivalent to the following integral
form:

h(t) = t f(h(7),08)dr + h(ty). (12)

to

Here, h(ty) is the initial hidden state, and function
f(h(t), @) describes the dynamic of hidden state h(t).
One can acquire the hidden state h(t) at an arbi-
trary time ¢ by solving problem (12) through an ODE
solver:

h(t) = ODESolver(f(-,0), h(to), to,t).  (13)

As indicated in [21], such an ODE solver can be im-
plemented by various numerical schemes, including
the forward and backward Euler methods, the Runge-
Kutta method, and the linear multi-step method. As a
consequence, applying neural ODE models (12) and
solvers (13) allows us to deal with continuous-time
sequences, so as to achieve continuous-time channel
prediction.

3.2 Framework of Neural ODE Based Chan-
nel Prediction

Based on the above background, the framework of
neural ODE-based channel prediction is presented in
this subsection. Our aim is to predict the channels for
all time slots of the future K frames by processing
those historical J channels. The Latent ODE archi-
tecture introduced in [22] is adopted to model this
process. For expression clarity, we denote H[n] =
[Vec(ﬂgn’o)), Vec(ﬂgn’o)), e ,Vec(ﬂ(Mn’O))] and
H(t) = [vec(H,,(t)), vec(Ha(t)), - - -, vec(Hp(2))].

As shown in Figure 3, the neural ODE-based chan-
nel prediction is composed of two modules, i.e., an
encoder and a decoder [22]. Generally speaking, the
encoder is responsible for extracting features from the
historical channels H[n] for n = {0,—1,---,—J +
1}. The output of the encoder serves as the initial state
of the decoder. Correspondingly, the decoder exploits
a neural ODE to infer future continuous-time channels
H(t) for t > 0.

Specifically, the encoder’s role is to extract the fea-
tures from historical channels. Since the SRS signals
are transmitted and received with equally-sized time
interval T’r, RNN-like architectures are enough to deal

with these sequences. We denote the hidden state of
H|[n] as R[n]. Then, based on the Markov property of
RNN models, the map from R[n — 1] to R[n] can be
written as

A~

R[n| = EncoderCell(R[n — 1], H[n|,0g), (14)

where EncoderCell(-) is the transition function of the
RNN-like network with 8 g being the learnable param-
eters.

For the decoder, a neural ODE model is deployed
to specific the dynamic of the future channel’s hidden
state. This hidden state is defined as O(¢). Besides,
the final output R[0] of the encoder is regarded as the
initial state O(0) of decoder. Therefore, for any times
t > 0, the hidden state O() can be presented as

d?it(t) = DecoderCell(O(t),0p), (15)

where DecoderCell(-) denotes the transition function
of the neural ODE network with 8p being its learn-
able parameters. Note that (15) can be solved by the
ODESolver as presented in (13). After that, one layer
neural network Pred(-) is built to output the predicted
channel H(¢) from the hidden state O (t):

H(t) = Pred(O(t),0p), (16)

where @p denotes its parameters. All in all, follow-
ing this neural ODE framework, we are capable of ex-
tracting features from the previous channels and then
predicting future continuous-time channels for any ¢.

3.3 TN-ODE Based Channel Prediction

In this subsection, we elaborate on the idea of ten-
sor neural ODE for designing the three crucial tran-
sition functions: EncoderCell(-), DecoderCell(-), and
Pred(-).

We commence our discussion by briefly introduc-
ing the transition functions widely used in classical
neural ODE framework [22]. The authors in [22] de-
ployed a GRU model as its encoder transition func-
tion and modified the GRU model to act as the de-
coder transition function. To fit in our channel pre-
diction framework, the inputs, hidden states, and out-
puts should be first vectorized as the following col-
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Encoder State
R[-3]

Historical Channels H[—2] H[-1] H[0]

0(0.7Ty)

Decoder State 0(0.3Tf)
0(0.1Tf) @

H(0.1Tf)

H(0.3Tf) H(0.7T;) Predicted Channels

A4 A4 g

Encoder

From discrete to continuous

Decoder

Figure 3. The framework of neural ODE-based channel prediction.

umn vectors: h[n] = vec(Hn]), r[n] = vec(R[n]),
o(t) = vec(O(t)), and h(t) = vec(H(t)). Then, ac-
cording to the GRU architecture [22], EncoderCell(-)

consists of the following modules:

z2=0 (UZﬁ[n] + Wor[n — 1]) , (17a)

X =0 (Uzﬁ[n] + Wor[n — 1]) : (17b)

u = tanh (U“fl[n] + W4 r[n—1]o x)> , (17¢)

rlnj]=(1—z)ou+zorn—1], (17d)
where matrices {U, W} are the learnable parameters.
As for the decoder, it is different from the encoder
which can receive external stimulus fl[n] to update its
states. The hidden state transition of DecoderCell(-)
is an auto-regressive process without external stimu-
lus. Thereby, to fit GRU model in this decoder, we
can carry out the steps below to modify GRU: re-
move fl[n] from (17a)-(17d); replace r[n — 1] and
r[n] with o(t) and d?i(tt), respectively. Finally, func-
tion Pred(-) can be realized by a fully connected layer,
ie. h(t) = W"o(t). As a result, the entire neural
ODE-based channel prediction is successfully estab-
lished based on the classical GRU model.

There is no denying that the above transition func-
tions have the ability to process continuous-time se-
quences. However, they will suffer from two serious
problems when applied to channel prediction. First,
these transition functions fail to exploit the underlying
channel structure. As shown in (1), mmWave channels
exhibit obvious correlations in multiple domains. For
example, the antenna-domain channel is constructed
by the superposition of multiple array steering vec-
tors with different AoAs and AoDs. Besides, in the
frequency domain, the channel structure can be cap-
tured by several ToAs. However, simply vectorizing

channels to fit in the GRU model will undermine such
regular structures. Second, the computational com-
plexity of these transition functions is also unafford-
able. Take the function Pred(-) as an example, we
suppose W" is a square matrix. As the dimension of
fl(t) is Nk Ng M x 1, then matrix W will contain
2N2:NZ M? floating points. If Ngp = Ng = 4 and
M = 256, then the number of floating points of W"
is 2NZNZ M? = 33,554, 432, which costs unaccept-
able computational resources.

To address these two critical problems, we propose
the TN-ODE by exploiting the channel correlation.
Our scheme is inspired by the tensor decomposition
based signal processing algorithms [23], which ex-
tract the information of channels from different do-
mains and process them separately. In our model, we
preserve the matrix form of H[n], R[n], O(t), and
ﬂ(t), and use different learnable transforms to inde-
pendently extract the antenna-domain and frequency-
domain information from historical channels. We take
the matrix product U%h[n] in (17a) as an example.
The classical GRU model (17a) vectorizes H[n| as
h[n] € CNeeNeMx1 and yses a high-dimensional ma-
trix U? to process h[n]. Instead, we keep the shape of
H(n] as NgeNg x M and use two independent low-
dimensional matrices U} and U; to separately work
on the antenna domain and frequency domain of H[n),
which gives rise to U7H[n]U?. Similarly, we modify
all modules in (17a)-(17d) by the same means to con-
struct the tensor-inspired EncoderCell(-) as

Z=0 <Uff1[n]Ui + WiR[n — 1]W§) . (18a)

X =0 (Ufﬂ[n]Uf + WIR[n — 1]Wf> . (18b)

U = tanh (Ugﬂ[n]ug +WE(R[n - 1] 0 X)W:f) ,
(18¢)

© China Communications Magazine Co., Ltd. - January 2024

169

Authorized licensed use limited to: Princeton University. Downloaded on May 27,2024 at 14:02:07 UTC from IEEE Xplore. Restrictions apply.



Rin]=(1-Z)oU+ZoR[n—1], (18d)
where matrices {U;, U,, W;, W,.} are all learnable
parameters. Here, matrices { U7, U7, U}'} have a size
of F; x NgrpNg, matrices {UZ?, UZ, U"} have a size
of M x F,, matrices {W}, W7, W}'} have a size of
F, x F, and matrices {WZ?, WZ W} have a size
of F, x F,.. F; and F, denote the feature dimen-
sions. Notice that the computations in (18a)-(18d) are
all complex-valued multiplications, which are realized
by the complex-valued neural network (CVNN) pro-
posed in [8]. The Sigmoid and Tanh functions work
on the real and imaginary parts respectively. More-
over, we can use the same way to transform the clas-
sical DecoderCell(-) and Pred(-) to their tensor forms.
To be specific, the transition function of the ODE de-
coder can be written as

Z(t) = o (VIO(t)V?), (19a)
X(t) = o (VIO(t)V?), (19b)
U(t) = tanh (VX(O(t) o X(£))VY), (19¢)
dO(t)

o~ = (1= Z(1) o U() +Z(t) o O(1). (199)

where the size of matrices {V}, V7, V}'} is F; x Fj and
the size of matrices {VZ, V¥ V!} is F, x F,. Then,
the function of Pred(-) can be given by

H(t) = W/O(t)W!, (20)

with W € CNeeNexFi qnd Wi e CFx M,

Our proposed TN-ODE enjoys two crucial merits
compared to the classical one [22]. To begin with, it
preserves the structural features of multi-domain chan-
nels in the entire procedure, so our scheme is spe-
cific for predicting wireless continuous-time channels.
Moreover, its computational complexity is much lower
than that of [22]. We still take the function Pred(-)
as an example. As shown in (20), we suppose both
W/ and W are square matrices. Since the shape
of H(t) is NxpNg x M, matrices W/} and W/ have
sizes of Nrp/Ng X NrpNg and M x M, which gives
rise to 2(N2p N3 + M?) floating points. Therefore, if
Nrrg = Nr = 4 and M = 256, the number of float-
ing points is decreasing from 33, 554,432 in W" to
131,574 in W} and W”. The computational com-
plexity is significantly improved.

As a consequence, our proposed TD-ODE takes ad-
vantage of the continuous-time signal processing ca-
pability of ODE and the multi-domain structure of
mmWave channels, so it is promising to achieve ef-
ficient continuous-time channel prediction, which will
be demonstrated in the simulation section.

3.4 Training and Testing Details

In this subsection, we supplement some training and
testing details. To begin with, we adopt an offline
training and online testing strategy. In the offline train-
ing stage, we use the clustered delay line (CDL) chan-
nel model to randomly generate Ny, time-varying
channel samples. We divide these samples into ]\é—g
batches, with BS being the batch size. We con-
sider the b-th batch. Each sample of this batch is a
time-varying channel sequence, which is divided into
two periods. The first period corresponds to the his-
torical channels. In this period, we sample J time
slots with an equal time interval of 7. The corre-
sponding historical channels are H™" = {H[—.J +
1],--- ,H[—1], H[0]}. The second period is regarded
as the future time, where P time slots are randomly
sampled from the time duration [0, KT}]. We use
th < t5 < ... < t% to index these sampled times
in the b-th batch. Therefore, the corresponding noise-
free channels are {H(¢}), H(¢5),--- , H(t%)}, which
are working as the training labels. Then, we use the
proposed TN-ODE model to process Y™ and pre-
dict {H(2), H(t3),--- ,H(t%)}. Finally, the NMSE
is used for the loss function:

1o~ [ 8@ - H@)|?
Loss = 2 ZE{ : . 21

Based on this loss function, the Adam optimizer is
adopted to update the network parameters using their
gradients. Notice that adjoint sensitivities proposed in
[14] are used to efficiently compute the ODE’s gra-
dients. The above procedure is carried out batch by
batch until convergence.

The data size in the testing stage is Ny, where
each channel sample is still divided into two peri-
ods. The first period is the same as that in the train-
ing stage. Regarding the second period, our target is
to predict channels for future K@) time slots (or K
frames). Therefore, we sample K @ slots with an equal
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time interval of T, which are denoted by t; = T,
i =1,---, KQ. Then, we use the well-trained TN-
ODE model to predict ﬂ(tz) i=1,---, KQ. Finally,
these predicted channels are used for precoding.

3.5 Computational Complexity

In this subsection, we provide a detailed computa-
tional complexity analysis of the proposed scheme in
the testing stage. Here, we mainly count the number
of complex-valued multiplications.

For a sequence of historical channels {H[—J +
1],--- ,H[—1],H[0]}, the total .J channels are pro-
cessed by the EncoderCell (18a)-(18d) sequentially.
Steps (18a)-(18c) have a complexity in the order of
O(F;NrgNR M + F;MF}.), and step (18d) has a com-
plexity of O(F}F,.). Therefore, taking into account the
J channels, the computational complexity of the en-
coder is O(JF;Nxg Nk M + JF{M F,.)+ O(JF,F,) =
O(JE,NrRpNrM + JF|MF}).

As for the decoder, we can similarly derive that the
computational complexities of calculating the func-
tions DecoderCell(-) and Pred(-) are O(F2F, + F,F?)
and O(NrgNRrFF, + NrpNrF,.M), respectively.
Moreover, the ODESolver(-) in (13) needs to calculate
the DecoderCell(-) for G times, where G is propor-
tional to K'(). Therefore, the computational complex-
ity of the decoder is O(GF?F, + GF,F?). Finally,
as K @) future channels are predicted, the overall num-
ber of complex-valued multiplications of the function
Pred(~) is O(KQNRFNREFT + KQNRFNRFTM).

As a consequence, the computional complexity of
the proposed TN-ODE model is

O(JFZM(NRFNR + Fr)) + O(GFlFr(Fl + Fr))
+O(KQNgeNRF,.(F; + M)).
(22)

IV. SIMULATION RESULTS

In this section, simulation results are provided to
demonstrate the superiority of our scheme. The CDL-
B channel model in the Matlab 5G toolbox [13] is uti-
lized to generate the data set. For each channel sam-
ple, the velocity of user is randomly generated from
the uniform distribution ¢ (30 km/h, 60 km/h) and the
delay spread is randomly chosen from the uniform dis-
tribution ¢/ (50 ns, 200 ns). The simulation configura-

tions are presented in Table 1. The compared bench-
marks are as follows: 1) the perfect CSI; 2) the clas-
sical Al-based algorithms, including the GRU-based
channel prediction [11] and the FC network based al-
gorithm [9]; 3) the classical model-based techniques,
including the prony-based angular-delay domain chan-
nel prediction (PAD) [6] and ST-AR [8] algorithms; 4)
utilizing the outdated channels without prediction.

Table 1. Simulation configurations.

Parameter Value Parameter Value
Nt 128 Ngp 4
Ng 4 f 28 GHz

B 100 MHz M 256
SNR 10dB Nirain 1000
Niest 200 BS 32

Ty 0.625 ms Ts 0.125 ms

J 10 P 5

2 Q 5
F 64 F. 128

In Figure 4, the average rate performance is evalu-
ated. We follow the 5G standard and set T’y as 0.625
ms and T as 0.125 ms. Therefore, the classical GRU,
FC, ST-AR, and PAD algorithms predict the channels
at the 5-th and 10-th time slots, and then recover the
channels at other time slots through linear interpola-
tion. It is clear from Figure 4 that the average rate per-
formance of classical algorithms degrades at the inter-
polated channels. Fortunately, our proposed scheme
is able to avoid interpolation loss by predicting the
future channels at all time slots with the assistance
of TN-ODE. Additionally, the proposed TN-ODE ex-
ploits the multi-domain channel structure, so it can
even achieve higher average rate than classical algo-
rithms at the 5-th and 10-th time slots.

In Figure 5, the real part of the true future channels
and the predicted channels for an arbitrary antenna in-
dex and subcarrier are presented. We can observe from
this figure that the existing discrete-time channel pre-
diction techniques can only accurately predict the fu-
ture channels at SRS positions, while the interpolated
channels considerably deviate from the true chan-
nels. On the contrary, the proposed TN-ODE scheme
well captures the dynamic of continuous-time chan-
nels. The simulation result in Figure 6 further supports
our discussion, where the NMSE performance against
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Figure 4. Average rate performance against time slots.
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time slots is illustrated. It is obvious that the achieved
NMSE of classical algorithms intensively fluctuates
with respect to time slots, which is induced by the er-
ror of interpolation. On the contrary, the NMSE per-
formance of our scheme smoothly deteriorates over
time, and it is always lower than -10 dB. As a result,
we can conclude that our TN-ODE based approach ac-
complishes accurate continuous-time channel predic-
tion.

--#-- Perfect CSI
—&— Proposed TN-ODE
GRU
1 —o— Fully-connected
—6—ST-AR
3 PAD

The real part of predicted channels

Slot:

@

(0.625 ms)

Figure 5. The real part of the true future channels and the
predicted channels.

V. CONCLUSION

In this paper, we have investigated the essential prob-
lem of continuous-time channel prediction in mo-
bile mmWave massive MIMO systems. At first, we
adopted the neural ODE to model the temporal corre-

NMSE (dB)

—&— Proposed TN-ODE
GRU
—e— Fully-connected
—6—ST-AR
PAD

—«—No prediction

h
A2k ]

14 L I I I I I I
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Figure 6. NMSE performance against time slots.

lation of mmWave channels, and then we introduced
the neural ODE based channel prediction framework.
This framework deployed a GRU-based encoder to ex-
tract features from historical channels and used a neu-
ral ODE based decoder to predict future continuous-
time channels. After that, a TN-ODE model was pro-
posed to improve this framework, which makes full
use of the multi-domain channel structure. Simula-
tions demonstrated that our scheme accomplished ac-
curate channel prediction in all time slots of several
future frames. The proposed TN-ODE model can be
potentially extended to various continuous-time chan-
nel prediction scenarios, such as cell-free communica-
tion scenarios and RIS-aided communication scenar-
ios. In the future, we will investigate the multi-user
continuous-time channel prediction.
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