

Active Reconfigurable Intelligent Surface Aided Wireless Communication Prototype

Zijian Zhang, Yuhao Chen, Zhenchen Peng, and Linglong Dai

<daill@tsinghua.edu.cn>

• Basics of RIS

• Existing passive RIS

• Developed active RIS

• Conclusions

Basics of RIS

- A surface of reconfigurable metamaterials
- Control the propagation of electromagnetic wave
- Manipulate the channel to improve the signal quality

Traditional wireless communications: Heavily rely on the environment RIS-aided wireless communications: Control the environment

• Basics of RIS

• Existing passive RIS

• Developed active RIS

• Conclusions

Realization of passive RIS

- RIS consisting of a large number of passive elements
- Negligible thermal noise, low cost, low power consumption

RIS-aided commutations@2.3 GHz

RIS-aided commutations@28 GHz

Application of passive RIS

"Multiplicative fading" effect

7

• The RIS-aided reflection link suffers large-scale fading twice

Example

• Passive RIS can only achieve negligible capacity gain in typical communication scenarios

• Basics of RIS

• Existing passive RIS

• Developed active RIS

• Conclusions

Concept of active RIS

- Passive RIS: Reflect signals directionally without amplification
- Active RIS: Amplify the reflected signals using power amplifiers

Realization of active RIS

• Reflection-type amplifier: 30 dB reflection gain

• Phase-shifting circuit: 2-bit resolution

Realization of active RIS

• Active RIS: Circuit -> element -> array

• Active RIS: Electromagnetic full-wave simulation

Active RIS communication prototype

- Active RIS: 3.5 GHz, 8×8 elements
- **BS** and user: USRP-2953R, horn antennas

Validation of active RIS signal model

Validation of active RIS signal model

Signal model:
$$y = pe^{j\theta}x + pn + z$$

Simulation results

• Active RIS can achieve noticeable capacity gain in typical communication scenarios

<section-header></section-header>			EEE CODBECOM®				
			Devic e	Reflection AoD	Received Power	Data Rate	
	Parameter	Setting	Metal		110.10	1.2.1.01	
	Frequency	3.55 GHz	plate	15°	-110 dBm	1.2 MHz	
	Bandwidth	40 MHz	Active		-100 dBm	29 5 MIL-	
	Polarization	Vertical (BS)	RIS			28.3 MHZ	
		Horizontal (user)	Metal	45°	105 dDm	1 5 MII-	
	BS-RIS distance	RIS distance 2 m	plate		-105 dBm	5m 1.5 MHZ	
	RIS-user distance	3.5 m	Active		05 dDres	20 MII-	10
	AoA	0°	RIS		-93 aBm	30 MHZ	18

Conclusions

- Basics of RIS
 - Reconfigure the wireless environment

• Existing passive RIS

- Passively reflect signals without amplification
- Fundamental limit: "multiplicative fading" effect
- Only achieves negligible capacity gain in typical scenarios

• Proposed active RIS

- Reflect signals with amplification to overcome "multiplicative fading" effect
- New signal model verified by experimental measurements
- Achieves noticeable capacity gain in typical scenarios
- Recent test results based on an 8×8 active RIS

Video Link: https://cloud.tsinghua.edu.cn/f/fd768b02984f44e398a7/

Zijian Zhang, Yuhao Chen, Zhenchen Peng, and Linglong Dai

<daill@tsinghua.edu.cn>

